Crab Cavity RF Noise Studies

T. Mastoridis¹, P. Baudrenghien²

¹California Polytechnic State University, San Luis Obispo ²BE-RF CERN

May 8th 2014

- Introduction
- Stability
- 3 RF Noise
- 4 RF Power
- 5 Conclusions

Introduction

The LLRF architecture has a significant impact on:

- Coupled-bunch instabilities
 - Presented in detail on Tuesday (P. Baudrenghien)
- Power Considerations
 - Main cavity phase modulation and consequences
- RF Noise
 - Emittance growth due to Amplitude/Phase noise
 - Luminosity reduction due to Phase noise

Trade-offs exist between these topics and have been investigated

- 1 Introduction
- Stability
- 3 RF Noise
- 4 RF Power
- 5 Conclusions

Stability Summary from Tuesday (P. Baudrenghien)

- With the RF FB Off, the cavity will be detuned away from the betatron sidebands (\approx 1.5 kHz)
 - Cavity on-tune is ideal for stability, but cavity detuning in the wrong direction would lead to being problems
 - The resulting fastest growth rates (1 s⁻¹) are almost three order of magnitude slower than the damping time of the transverse damper (≈1 ms)
- With the RF FB On, the fastest growth rates are an additional three orders of magnitude lower
 - Sensitive to LLRF settings, but margin of stability really big
 - Freedom to manipulate RF FB as needed for other considerations

-100 -60 -60 -0.00005
-0.00005

Cavity Impedance with RF FB Off. Growth rates with RF FB On.

- 1 Introduction
- Stability
- 3 RF Noise
- 4 RF Power
- 5 Conclusions

Emittance growth due to RF noise

- Emittance growth due to the crab cavity noise is the most concerning issue
- An expression has been derived relating the crab cavity noise power spectral density with the emittance growth rate

$$\begin{array}{lcl} \frac{d\epsilon_{X}}{dt} & = & N \Big[\frac{\beta_{cc}}{2} (\frac{eV_{cc}\sigma_{\phi}f_{rev}}{2E_{b}})^{2} \sum_{m=-\infty}^{\infty} S_{\Delta A}(f\pm f_{b}\pm f_{s}-mf_{rev}) + \\ & + & \beta_{cc} (\frac{eV_{cc}f_{rev}}{2E_{b}})^{2} \sum_{m=-\infty}^{\infty} S_{\Delta \phi}(f\pm f_{b}-mf_{rev}) \Big] \end{array}$$

- On the LLRF side, the goal is to reduce the noise power spectral density at the betatron sidebands
- It is possible to determine the expected growth rate with an estimate of the crab cavity noise power spectral density
- Let's focus on the phase noise contribution for the next couple of slides

Emittance growth due to phase noise

Estimation with LHC main cavity measurements

- First, we estimate the expected emittance growth rate using the measured power spectral density of the LHC main cavities (figure)
- The transverse emittance would increase by 60% over an hour with this power spectral density! ($V_c=3.4$ MV, $\epsilon_n=3.75$ microns, $\beta_{cc}=3500$ m)
 - \bullet Including the ${\approx}30$ reduction through the action of the transverse damper
- So, what do we do? Clever RF FB techniques are required

Emittance growth due to phase noise

Contributions and expected reduction

- ullet The 1/f noise from the crystal oscillator is not an issue (first sideband at pprox 3 kHz)
- ullet The noise up to pprox 20 kHz is from the transmitter. Tetrodes are less noisy than klystrons, so we anticipate a much lower noise level
- \bullet The contributions up to the closed loop cavity bandwidth of \approx 300 kHz are dominated by the analog demodulator in the RF FB.
 - For an emittance growth rate of approximately 5%/hour the demodulator noise level should be in the order of -140 dBc/Hz (very challenging)

Emittance growth due to phase noise

Bandwidth reduction

- A more realistic scenario would involve a significant reduction of the RF FB bandwidth with a corresponding increase in the generator polar loop bandwidth
 - Effectively this is a careful optimization of the LLRF loop parameters based on the specific noise sources
 - But, we have experience in developing appropriate models and tools to achieve this
 - Generator polar loop gain increased by 17 dB, RF FB gain reduced by 10 dB
 - With the modeled power spectral density below, it should be possible to achieve a 5% transverse emittance growth rate

Emittance growth due to phase noise

Bandwidth reduction: Cons

- The reduced RF FB bandwidth will limit the beam loading compensation
- lacktriangle Only an additional $\pm 0.2^{\circ}$ error though due to high cavity Q_L

Transverse damper

 Increasing the transverse damper gain at low frequencies could also help a little, with negligible effects on damper stability and injection of BPM noise through the damper

In the end, a combination of LLRF parameter optimization and component improvement will be necessary. Measurements will be necessary.

SPS Tests

SPS tests will help validate our models and decide on the optimal strategy

- Emittance growth in the SPS is dominated by other factors
- We faced a similar issue in the case of longitudinal emittance growth due to the main LHC RF system (growth dominated by IBS)
- Solution: artificially injected noise until we saw a result in the emittance growth rate
- Measurement with the actual components will be necessary to determine the best configuration of the LLRF tool
 - Polar loop will be installed in the tetrode test stand by the end of the year, so we will have more accurate information soon
 - Renovated SPS damper will allow detailed studies on the effect of the damper

Emittance growth due to amplitude noise

- Since the phase noise is dominated by the analog demodulator, the amplitude noise is closely related to the phase noise: $\Delta A = \frac{\Delta V}{V} = \Delta \phi$
 - This assumption holds for the main RF. Measurements will be conducted on the SPS test stand to verify
 - Amplitude noise is about a factor of 50 lower. The transverse damper though cannot
 act on amplitude noise (head-tail motion rather than bunch motion), so in the end the
 phase and amplitude noise contributions are comparable → total emittance growth
 rate is about 60% higher

Luminosity reduction due to RF noise

- The phase noise jitter also translates to a jitter in the IP transverse position
- ullet For emittance growth purposes, we aim to 40 μ rad rms phase noise per cavity
- Corresponds to at most a 3 nm transverse position jitter for a 6 μ m beam size \rightarrow no issues anticipated

$$\Delta X = \frac{c\theta_c}{\omega_{RF}} \Delta \phi$$

14

- Introduction
- Stability
- 3 RF Noise
- 4 RF Power
- 5 Conclusions

Main cavity phase modulation: background

- RF/LLRF currently setup for extremely stable RF voltage (minimize transient beam loading effects). Less than 1° RF phase modulation (7 ps)
- To continue this way, we would need at least 200 kW of klystron forward power at nominal beam current (0.58 A DC)
 - Klystrons saturate at 200 kW with present DC parameters (ultimately 300 kW).
 Sufficient margin necessary for reliable operation, additional RF manipulations etc.
 - The present scheme cannot be extended beyond nominal. Graphs for nominal (1.15e11 ppb, 25 ns, 7 TeV, 0.58 A DC), ultimate at 450 GeV (1.7e11 ppb, 25 ns, 0.86 A DC), ultimate at 7 TeV

Main cavity phase modulation: solution

- For beam currents above nominal (and possibly earlier), we will accept the cavity phase modulation by the beam in physics (transient beam loading), but keep the strong RF/OTFB for loop and beam stability
- To achieve this, we have to adapt the voltage set point for each bunch
- An iterative algorithm has been developed, which is independent of beam current, cavity voltage and Q_I
- Significant reduction of klystron forward power expected
- Existing RF would be sufficient even for High-Lumi LHC (1.1 A DC)

Main cavity phase modulation: consequences

- If the crab cavity follows the phase modulation
 - Power requirements increase significantly: up to 170 kW with optimal Q_L (44,000), 950 kW with Q_L = 500,000!
 - Transmitter more expensive. More importantly, windows too small for all this power
- If the crab cavity phase is fixed:
 - No power requirement change
 - There will be an error between the cavity and beam phase, leading to a transverse displacement at the IP
 - This displacement is comparable to the transverse beam size
 - BUT, it is common for both beams, so there is no loss of luminosity, only a modulation of the vertex's transverse position (acceptable to the experiments)

- 1 Introduction
- 2 Stability
- 3 RF Noise
- 4 RF Power
- Conclusions

Conclusions

- The impedance at the fundamental is not a problem, thanks to the RF feedback
- The main RF cavity phase modulation algorithm would lead to an IP transverse position modulation, comparable in size to the beam
- We have formulas for the transverse emittance growth caused by RF noise
 - Early estimates are a bit alarming
 - Clever RF FB techniques will be necessary to achieve a 5% transverse emittance growth rate
 - Detailed studies on the way
- No direct luminosity reduction expected due to the RF noise

Thank you for your attention

